An evaluation of the failure modes transition and the Christensen ductile/brittle failure theory using molecular dynamics

Author:

Christensen Richard1ORCID,Li Zhi2ORCID,Gao Huajian2

Affiliation:

1. Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA

2. School of Engineering, Brown University, Providence, RI 02912, USA

Abstract

The Christensen ductile/brittle failure theory can be interpreted in terms of the associated failure modes, those of shear bands and voids nucleation. Their conjunction is then termed as the failure modes transition and it is studied here using molecular dynamics. The test material is taken as a particular metallic glass, CuZr. First the theoretical failure criteria are evaluated and then the theoretical failure modes transition is evaluated. Both are found to perform extremely well. The overall failure theory contains three modes of failure, the two already mentioned plus a fracture criterion. A general conclusion from the work is that the voids nucleation criterion is of unusually broad relevance. Voids nucleation leads to voids growth and then further deteriorating mechanisms and ultimately failure. But the voids nucleation is the precipitating event of all that subsequently occurs in this process. Access to these capabilities is gained through the failure theory for all homogeneous, full density, isotropic materials. Only two standard testing measurements are needed to calibrate the entire failure theory, including the transitions.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of stress path and load rate effects on rock strength using compression testing data for Stanstead Granite;International Journal of Rock Mechanics and Mining Sciences;2023-09

2. Fracture universality in amorphous nanowires;Journal of the Mechanics and Physics of Solids;2023-04

3. Energy-based universal failure criterion and strength-Poisson's ratio relationship for isotropic materials;International Journal of Mechanical Sciences;2022-09

4. Feasibility of source-free DAS logging for next-generation borehole imaging;Scientific Reports;2022-07-13

5. Mean field fracture in disordered solids: Statistics of fluctuations;Journal of the Mechanics and Physics of Solids;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3