Affiliation:
1. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
2. Institute for Quantum Optics and Quantum Information (IQOQI) Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
Abstract
We study the properties of the set of marginal distributions of infinite translation-invariant systems in the two-dimensional square lattice. In cases where the local variables can only take a small number
d
of possible values, we completely solve the marginal or membership problem for nearest-neighbours distributions (
d
= 2, 3) and nearest and next-to-nearest neighbours distributions (
d
= 2). Remarkably, all these sets form convex polytopes in probability space. This allows us to devise an algorithm to compute the minimum energy per site of any TI Hamiltonian in these scenarios exactly. We also devise a simple algorithm to approximate the minimum energy per site up to arbitrary accuracy for the cases not covered above. For variables of a higher (but finite) dimensionality, we prove two no-go results. To begin, the exact computation of the energy per site of arbitrary TI Hamiltonians with only nearest-neighbour interactions is an undecidable problem. In addition, in scenarios with
d
≥2947, the boundary of the set of nearest-neighbour marginal distributions contains both flat and smoothly curved surfaces and the set itself is not semi-algebraic. This implies, in particular, that it cannot be characterized via semidefinite programming, even if we allow the input of the programme to include polynomials of nearest-neighbour probabilities.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献