Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions

Author:

Leighton T. G.1,White P. R.1

Affiliation:

1. Institute of Sound and Vibration Research, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Abstract

In recent years, because of the importance of leak detection from carbon capture and storage facilities and the need to monitor methane seeps and undersea gas pipelines, there has been an increased requirement for methods of detecting bubbles released from the seabed into the water column. If undetected and uncorrected, such leaks can generate huge financial and environmental losses. This paper describes a theory by which the passive acoustic signals detected by a hydrophone array can be used to quantify gas leakage, providing a practical (as opposed to research), passive and remote detection system which can monitor over a period of years using simple instrumentation. The sensitivity in detecting and quantifying the flux of gas is shown to exceed by more than two orders of magnitude the sensitivity of the current model-based techniques used commercially for gas leaks from large, long pipelines.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3