Affiliation:
1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Abstract
Surface growth by association or dissociation of material on the boundary of a body is ubiquitous in both natural and engineering systems. It is the fundamental mechanism by which biological materials grow, starting from the level of a single cell, and is increasingly applied in engineering processes for fabrication and self-assembly. A significant challenge in modelling such processes arises due to the inherent coupled interaction between the growth kinetics, the local stresses and the diffusing constituents needed to sustain the growth. Moreover, the volume of the body changes not only due to surface growth but also by variation in solvent concentration within the bulk. In this paper, we present a general theoretical framework that captures these phenomena and describes the kinetics of surface growth while accounting for coupled diffusion. Then, by the combination of analytical and numerical tools, applied to a simple growth geometry, we show that the evolution of such growth processes tends towards a universal path that is independent of initial conditions. This path, on which surface growth and diffusion act harmoniously, can be extended to analytically portray the evolution of a body from inception up to a treadmilling state, in which addition and removal of material are balanced.
Funder
MIT Civil and Environmental Engineering
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献