Peridynamic simulations of brittle structures with thermal residual deformation: strengthening and structural reactivity of glasses under impacts

Author:

Jeon ByoungSeon1,Stewart Ross J.2,Ahmed Izhar Z.2

Affiliation:

1. Scientific Computing, S&T, Corning Incorporated, Corning, NY, USA

2. Advanced Modeling & Analysis, MT&E, Corning Incorporated, Corning, NY, USA

Abstract

In glass research, the effect and influence of pre-deformation by thermal or chemical treatment is of great importance when configuring different mechanical properties or scratch resistance on the surface of glasses. In particular, such pre-deformation affects dynamic fracture or damage evolution when glass structures are under impact or collision conditions. Peridynamics provides a seamless approach for the simulation of dynamic damage evolution of the system under aggressive environments. Revising the pair interaction of each material point, the effect of pre-deformation is implemented, and the corresponding damage evolution can be simulated conveniently. Our approach is composed of two steps: first, a static solution is found via energy minimization with thermal boundary conditions in the peridynamic platform. Second, comparing the initial and the pre-deformed structures from the energy minimization, the effect of residual deformation, strengthening and reactive behaviour of brittle structures are seamlessly simulated. The developed methods are applied to the Prince Rupert’s drop and Bologna vial, which are classic examples of strengthened glasses. This study reports the first complete and successful simulation of dynamic behaviour of strengthened glasses, and a significant contribution in simulating residual stress behaviour in any material.

Funder

Corning Incorporated

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3