Causality and passivity in elastodynamics

Author:

Srivastava Ankit

Abstract

What are the constraints placed on the constitutive tensors of elastodynamics by the requirements that the linear elastodynamic system under consideration be both causal (effects succeed causes) and passive (system does not produce energy)? The analogous question has been tackled in other areas but in the case of elastodynamics its treatment is complicated by the higher order tensorial nature of its constitutive relations. In this paper, we clarify the effect of these constraints on highly general forms of the elastodynamic constitutive relations. We show that the satisfaction of passivity (and causality) directly requires that the hermitian parts of the transforms (Fourier and Laplace) of the time derivatives of the constitutive tensors be positive semi-definite. Additionally, the conditions require that the non-hermitian parts of the Fourier transforms of the constitutive tensors be positive semi-definite for positive values of frequency. When major symmetries are assumed these definiteness relations apply simply to the real and imaginary parts of the relevant tensors. For diagonal and one-dimensional problems, these positive semi-definiteness relationships reduce to simple inequality relations over the real and imaginary parts, as they should. Finally, we extend the results to highly general constitutive relations which include the Willis inhomogeneous relations as a special case.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference53 articles.

1. Causality and the Dispersion Relation: Logical Foundations

2. On the Theory of Dispersion of X-Rays

3. La diffusion de la lumiere par les atomes;Kramers HA;Atti Congress. Int. Fis.,1927

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From frequency-dependent models to frequency-independent enriched continua for mechanical metamaterials;European Journal of Mechanics - A/Solids;2024-07

2. Acoustic resonances in non-Hermitian open systems;Nature Reviews Physics;2023-11-21

3. Discrete One-Dimensional Models for the Electromomentum Coupling;Physical Review Applied;2023-07-19

4. Maximizing electro-momentum coupling in generalized 2D Willis Metamaterials;Extreme Mechanics Letters;2023-06

5. Odd Viscosity and Odd Elasticity;Annual Review of Condensed Matter Physics;2023-03-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3