Affiliation:
1. Institut für Mathematik, MA 7-2, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany
Abstract
We propose a notion of a pluri-Lagrangian problem, which should be understood as an analogue of multi-dimensional consistency for variational systems. This is a development along the line of research of discrete integrable Lagrangian systems initiated in 2009 by Lobb and Nijhoff, however, having its more remote roots in the theory of pluriharmonic functions, in the
Z
-invariant models of statistical mechanics and their quasiclassical limit, as well as in the theory of variational symmetries going back to Noether. A
d
-dimensional pluri-Lagrangian problem can be described as follows: given a
d
-form
on an
m
-dimensional space (called multi-time,
m
>
d
), whose coefficients depend on a sought-after function
x
of
m
independent variables (called field), find those fields
x
which deliver critical points to the action functionals
for
any
d
-dimensional manifold
Σ
in the multi-time. We derive the main building blocks of the multi-time Euler–Lagrange equations for a discrete pluri-Lagrangian problem with
d
=2, the so-called corner equations, and discuss the notion of consistency of the system of corner equations. We analyse the system of corner equations for a special class of three-point two-forms, corresponding to integrable quad-equations of the ABS list. This allows us to close a conceptual gap of the work by Lobb and Nijhoff by showing that the corresponding two-forms are closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding corner equations. We also find an example of a pluri-Lagrangian system not coming from a multi-dimensionally consistent system of quad-equations.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献