Affiliation:
1. Department of Physics and Astronomy, Clemson University, Kinard Laboratory, Clemson, SC 29634, USA
Abstract
The possibility of using retrocausality to obtain a fundamentally relativistic account of the Bell correlations has gained increasing recognition in recent years. It is not known, however, the extent to which these models can make use of their relativistic properties to account for relativistic effects on entangled systems. We consider here a hypothetical relativistic Bell experiment, where one of the wings experiences time-dilation effects. We show that the retrocausal Brans model (
Found. Phys.
,
49
(2), 2019) can be easily generalized to analyse this experiment, and that it predicts less separation of eigenpackets in the wing experiencing the time-dilation. This causes the particle distribution patterns on the photographic plates to differ between the wings—an experimentally testable prediction of the model. We discuss the difficulties faced by other hidden variable models in describing this experiment, and their natural resolution in our model due to its relativistic properties. In particular, we discuss how a
ψ
-epistemic interpretation may resolve several difficulties encountered in relativistic generalizations of de Broglie–Bohm theory and objective state reduction models. Lastly, we argue that it is not clear at present, due to technical difficulties, if our prediction is reproduced by quantum field theory. We conclude that if it is, then the retrocausal Brans model predicts the same result with great simplicity in comparison. If not, the model can be experimentally tested.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献