Bistability of flame propagation in a model with competing exothermic reactions

Author:

Towers I. N.1,Gubernov V. V.2,Kolobov A. V.2,Polezhaev A. A.2,Sidhu H. S.1

Affiliation:

1. School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Northcott Drive, Canberra, Australian Capital Territory 2600, Australia

2. I. E. Tamm Theory Department, P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninsky prospect, Moscow 119991, Russia

Abstract

We investigate a diffusional-thermal model with two-step competitive exothermic reactions for premixed combustion wave propagation in one spatial dimension under adiabatic conditions. A criterion based on the crossover temperature notion was used to qualitatively predict the region in the space of parameters where three travelling combustion wave solutions coexist, which are further studied via numerical means. It is demonstrated that under certain conditions the flame speed is an ‘S’-shaped function of parameters. The fast branch is either stable or is partly stable and exhibits the Andronov–Hopf (AH) bifurcation before the turning point is reached. The mid-branch is completely unstable. The slow solution branch is either unstable or partly stable and exhibits a single or a pair of AH bifurcations. The AH bifurcations are shown to be supercritical giving rise to stable pulsating waves. Bistability and hysteresis phenomena are also demonstrated.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3