Anomalous strain energy transformation pathways in mechanical metamaterials

Author:

Karpov Eduard G.1ORCID,Danso Larry A.1,Klein John T.1

Affiliation:

1. Department of Civil and Materials Engineering, University of Illinois, Chicago, IL 60607, USA

Abstract

This discussion starts with a mechanics version of Parseval's energy theorem applicable to any discrete lattice material with periodic internal structure: a microtruss, grid, frame, origami or tessellation. It provides a simple relationship between the strain energy volumetric/usual and spectral distributions in the reciprocal space. The spectral energy distribution leads directly to a spectral entropy of lattice deformation (Shannon's type), whose variance with a material coordinate represents the decrease of information about surface loads in the material interior. Spectral entropy is also a basic measure of complexity of mechanical responses of metamaterials to surface and body loads. Considering transformation of the energy volumetric and spectral distributions with a material coordinate pointed away from a surface load, several interesting anomalies are seen even for simple lattice materials, when compared to continuum materials. These anomalies include selective filtering of surface Raleigh waves (sinusoidal pressure patterns), Saint–Venant effect inversion illustrated by energy spectral distribution contours, occurrence of ‘hiding pockets’ of low deformation, and redirection of strain energy maximum away from axis of a concentrated surface load. The latter phenomenon can be significant for impact protection applications of mechanical metamaterials.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A minimalist elastic metamaterial with meta-damping mechanism;International Journal of Solids and Structures;2024-10

2. Continuum skin effect in orthotropic elasticity;Physical Review B;2024-09-11

3. Response properties of lattice metamaterials under periodically distributed boundary loads;International Journal of Solids and Structures;2024-08

4. A variegated effective elastic modulus in metabeams under periodically distributed loads;Mechanics Research Communications;2023-10

5. Mechanical energy metamaterials in interstellar travel;Progress in Materials Science;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3