Modes of growth in dynamic systems

Author:

Garrett Timothy J.1

Affiliation:

1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah, USA

Abstract

Regardless of a system's complexity or scale, its growth can be considered to be a spontaneous thermodynamic response to a local convergence of down-gradient material flows. Here it is shown how system growth can be constrained to a few distinct modes that depend on the time integral of past flows and the current availability of material and energetic resources. These modes include a law of diminishing returns, logistic behaviour and, if resources are expanding very rapidly, super-exponential growth. For a case where a system has a resolved sink as well as a source, growth and decay can be characterized in terms of a slightly modified form of the predator–prey equations commonly employed in ecology, where the perturbation formulation of these equations is equivalent to a damped simple harmonic oscillator. Thus, the framework presented here suggests a common theoretical under-pinning for emergent behaviours in the physical and life sciences. Specific examples are described for phenomena as seemingly dissimilar as the development of rain and the evolution of fish stocks.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Climatologically invariant scale invariance seen in distributions of cloud horizontal sizes;Atmospheric Chemistry and Physics;2024-01-05

2. Top‐Down Approaches to the Study of Cloud Systems;Fast Processes in Large‐Scale Atmospheric Models;2023-11-30

3. Harmonic Oscillators of Mathematical Biology: Many Faces of a Predator-Prey Model;Mathematics Magazine;2022-04-25

4. Analytical Solutions for Precipitation Size Distributions at Steady State;Journal of the Atmospheric Sciences;2019-04-01

5. Thermodynamic Constraints on the Size Distributions of Tropical Clouds;Journal of Geophysical Research: Atmospheres;2018-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3