Affiliation:
1. School of Mathematics, University of Birmingham, Watson Building, Edgbaston, Birmingham B15 2TT, UK
Abstract
In this paper, we examine a semi-linear parabolic Cauchy problem with non-Lipschitz nonlinearity which arises as a generic form in a significant number of applications. Specifically, we obtain a well-posedness result and examine the qualitative structure of the solution in detail. The standard classical approach to establishing well-posedness is precluded owing to the lack of Lipschitz continuity for the nonlinearity. Here, existence and uniqueness of solutions is established via the recently developed generic approach to this class of problem (Meyer & Needham 2015
The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations
. London Mathematical Society Lecture Note Series, vol. 419) which examines the difference of the maximal and minimal solutions to the problem. From this uniqueness result, the approach of Meyer & Needham allows for development of a comparison result which is then used to exhibit global continuous dependence of solutions to the problem on a suitable initial dataset. The comparison and continuous dependence results obtained here are novel to this class of problem. This class of problem arises specifically in the study of a one-step autocatalytic reaction, which is schematically given by
A
→
B
at rate
a
p
b
q
(where
a
and
b
are the concentrations of
A
and
B
, respectively, with 0<
p
,
q
<1) and well-posedness for this problem has been lacking up to the present.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献