On the energy partition in oscillations and waves

Author:

Slepyan Leonid I.1

Affiliation:

1. School of Mechanical Engineering, Tel Aviv University, PO Box 39040, Ramat Aviv, 69978 Tel Aviv, Israel

Abstract

A class of generally nonlinear dynamical systems is considered, for which the Lagrangian is represented as a sum of homogeneous functions of the displacements and their derivatives. It is shown that an energy partition as a single relation follows directly from the Euler–Lagrange equation in its general form. The partition is defined solely by the homogeneity orders. If the potential energy is represented by a single homogeneous function, as well as the kinetic energy, the partition between these energies is defined uniquely. For a steady-state solitary wave, where the potential energy consists of two functions of different orders, the Derrick–Pohozaev identity is involved as an additional relation to obtain the partition. Finite discrete systems, finite continuous bodies, homogeneous and periodic-structure waveguides are considered. The general results are illustrated by examples of various types of oscillations and waves: linear and nonlinear, homogeneous and forced, steady-state and transient, periodic and non-periodic, parametric and resonant, regular and solitary.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discrete Thermomechanics: From Thermal Echo to Ballistic Resonance (A Review);Mechanics and Control of Solids and Structures;2022

2. Inverse cascade and magnetic vortices in kinetic Alfvén-wave turbulence;Journal of Plasma Physics;2021-03-08

3. One-way interfacial waves in a flexural plate with chiral double resonators;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2019-11-25

4. Equilibration of energies in a two-dimensional harmonic graphene lattice;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2019-11-25

5. Waves in elastic bodies with discrete and continuous dynamic microstructure;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2019-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3