Affiliation:
1. Department of Mechanical Engineering, The University of Auckland, Office 401.903, Symonds Street 20, Auckland 1010, New Zealand
Abstract
The paper deals with the analysis of wave propagation in a general one-dimensional (1D) non-uniform waveguide featuring multiple modulations of parameters with different, arbitrarily related, spatial periods. The considered quasi-periodic waveguide, in particular, can be viewed as a model of pure periodic structures with imperfections. Effects of such imperfections on the waveguide frequency bandgaps are revealed and described by means of the method of varying amplitudes and the method of direct separation of motions. It is shown that imperfections cannot considerably degrade wave attenuation properties of 1D periodic structures, e.g. reduce widths of their frequency bandgaps. Attenuation levels and frequency bandgaps featured by the quasi-periodic waveguide are studied without imposing any restrictions on the periods of the modulations, e.g. for their ratio to be rational. For the waveguide featuring relatively small modulations with periods that are not close to each other, each of the frequency bandgaps, to the leading order of smallness, is controlled only by one of the modulations. It is shown that introducing additional spatial modulations to a pure periodic structure can enhance its wave attenuation properties, e.g. a relatively low-frequency bandgap can be induced providing vibration attenuation in frequency ranges where damping is less effective.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献