Transient and asymptotic kinetics of mass transfer by coupled surface and grain boundary diffusion in sintering under strain rate control

Author:

Delannay Francis1ORCID,Brassart Laurence2

Affiliation:

1. Institute of Mechanics, Materials and Civil Engineering, iMMC/IMAP, Université catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium

2. Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia

Abstract

An original procedure is developed for simulating pore surface evolution during sintering at high strain rate while distinguishing two types of diffusion fluxes: transient surface fluxes governed by short-range curvature gradients and coupled fluxes at surface and grain boundary governed by strain rate. The latter fluxes become dominant asymptotically, i.e. after damping-out of transient fluxes. The procedure aims at allowing the prediction of the strain rate dependence of macroscopic viscosity, a concept which is meaningful only during the asymptotic stage. The problem is addressed in two-dimension. It is shown that the asymptotic solution of the general partial differential equation of the problem can be obtained as the solution of an ordinary differential equation, of which the resolution lends itself to a semi-analytical procedure. An estimate is also proposed for the rate of convergence of the general solution towards the asymptotic solution. The accuracy of the mathematical procedure is validated by a comparison of the evolution of asymptotic profiles and exact profiles calculated fully numerically during densification or expansion of the system. A method is proposed for mapping the conditions of existence of an asymptotic stage. The method can account for the dependence of average grain coordination on relative density.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference34 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The role of grain boundary mobility in diffusional deformation;Journal of the Mechanics and Physics of Solids;2021-09

2. Two-particle sintering models and their application;CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2020 (CEST 2020);2020

3. Strain rate dependence of the contribution of surface diffusion to bulk sintering viscosity;Journal of the American Ceramic Society;2018-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3