Luminescence from hydrodynamic cavitation

Author:

Farhat M.1,Chakravarty A.2,Field J. E.2

Affiliation:

1. Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Hydraulic Machines, Lausanne, Switzerland

2. Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, UK

Abstract

The majority of the research on cavitation luminescence has focused on the sonoluminescence or chemiluminescence generated by cavitation induced through ultrasound, with a lesser body of work on the luminescence induced by laser- or spark-induced cavitation. In such circumstances, the cavitation is generated in liquids where, on the broad scale, there is usually assumed to be no net liquid flow (although of course there are small-scale flows as a result of the cavitation itself, through radiation forces, streaming, microstreaming and turbulence). Little attention has been paid to the luminescence that accompanies (undesirable) cavitation in pumps and turbines or in marine propellers. In the present study, the sonoluminescence specific to air/water vapour bubbles, collapsing within a cavitation tunnel, is addressed. The particular case of leading edge cavitation over a two-dimensional hydrofoil is considered in detail. Hence, strong instabilities develop, causing the attached cavity to shed large clouds of micro bubbles. The spatial and temporal properties of the emitted luminescence were studied using an intensified charge coupled device video camera and a photomultiplier (PM). The light emission was found to extend downstream from the region of cavity closure, to the region where the travelling vortices collapse. Examination of the PM signal on short time scales showed that the emitted luminescence consisted of relatively intense flashes of short duration (as with other forms of luminescence). Individual flashes were often found to be clustered in time. Over longer time scales, clear evidence of periodicity was found in the PM signals. Further analysis showed that bursts of light were being emitted at the Strouhal frequency (for the shedding of transcient cavities).

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3