Affiliation:
1. Department of Physics, School of Engineering and Applied Sciences, Harvard University, Pierce Hall 29 Oxford Street, Cambridge, MA 02138, USA
Abstract
Multi-stable structures are objects with more than one stable conformation, exemplified by the simple switch. Continuum versions are often elastic composite plates or shells, such as the common measuring tape or the slap bracelet, both of which exhibit two stable configurations: rolled and unrolled. Here, we consider the energy landscape of a general class of multi-stable anisotropic strips with spontaneous Gaussian curvature. We show that while strips with non-zero Gaussian curvature can be bistable, and strips with positive spontaneous curvature are always bistable, independent of the elastic moduli, strips of spontaneous negative curvature are bistable only in the presence of spontaneous twist and when certain conditions on the relative stiffness of the strip in tension and shear are satisfied. Furthermore, anisotropic strips can become tristable when their bending rigidity is small. Our study complements and extends the theory of multi-stability in anisotropic shells and suggests new design criteria for these structures.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献