Modelling nonlinear electrohydrodynamic surface waves over three-dimensional conducting fluids

Author:

Wang Zhan12ORCID

Affiliation:

1. Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Abstract

The evolution of the free surface of a three-dimensional conducting fluid in the presence of gravity, surface tension and vertical electric field due to parallel electrodes, is considered. Based on the analysis of the Dirichlet–Neumann operators, a series of fully nonlinear models is derived systematically from the Euler equations in the Hamiltonian framework without assumptions on competing length scales can therefore be applied to systems of arbitrary fluid depth and to disturbances with arbitrary wavelength. For special cases, well-known weakly nonlinear models in shallow and deep fluids can be generalized via introducing extra electric terms. It is shown that the electric field has a great impact on the physical system and can change the qualitative nature of the free surface: (i) when the separation distance between two electrodes is small compared with typical wavelength, the Boussinesq, Benney–Luke (BL) and Kadomtsev–Petviashvili (KP) equations with modified coefficients are obtained, and electric forces can turn KP-I to KP-II and vice versa; (ii) as the parallel electrodes are of large separation distance but the thickness of the liquid is much smaller than typical wavelength, we generalize the BL and KP equations by adding pseudo-differential operators resulting from the electric field; (iii) for a quasi-monochromatic plane wave in deep fluid, we derive the cubic nonlinear Schrödinger (NLS) equation, but its type (focusing or defocusing) is strongly influenced by the value of the electric parameter. For sufficient surface tension, numerical studies reveal that lump-type solutions exist in the aforementioned three regimes. Particularly, even when the associated NLS equation is defocusing for a wave train, lumps can exist in fully nonlinear models.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3