Approximation of potential-driven flow dynamics in large-scale self-similar tree networks

Author:

Mayes Jason1,Sen Mihir1

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

Abstract

Dynamic analysis of large-scale flow networks is made difficult by the large system of differential-algebraic equations resulting from its modelling. To simplify analysis, the mathematical model must be sufficiently reduced in complexity. For self-similar tree networks, this reduction can be made using the network’s structure in way that can allow simple, analytical solutions. For very large, but finite, networks, analytical solutions are more difficult to obtain. In the infinite limit, however, analysis is sometimes greatly simplified. It is shown that approximating large finite networks as infinite not only simplifies the analysis, but also provides an excellent approximate solution.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference24 articles.

1. Fluid Flow Through Microscale Fractal-Like Branching Channel Networks

2. Heat transfer and pressure drop in fractal tree-like microchannel nets

3. Analysis of flow in networks or conduits of conductors;Cross H.;Univ. Illinois Bull.,1936

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3