Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves

Author:

Courtney C. R. P.1,Ong C.-K.1,Drinkwater B. W.1,Bernassau A. L.2,Wilcox P. D.1,Cumming D. R. S.2

Affiliation:

1. Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK

2. School of Engineering, University of Glasgow, Rankine Building, Glasgow G12 8LT, UK

Abstract

The ability to manipulate dense micrometre-scale objects in fluids is of interest to biosciences with a view to improving analysis techniques and enabling tissue engineering. A method of trapping micrometre-scale particles and manipulating them on a two-dimensional plane is proposed and demonstrated. Phase-controlled counter-propagating waves are used to generate ultrasonic standing waves with arbitrary nodal positions. The acoustic radiation force drives dense particles to pressure nodes. It is shown analytically that a series of point-like traps can be produced in a two-dimensional plane using two orthogonal pairs of counter-propagating waves. These traps can be manipulated by appropriate adjustment of the relative phases. Four 5 MHz transducers (designed to minimize reflection) are used as sources of counter-propagating waves in a water-filled cavity. Polystyrene beads of 10 μm diameter are trapped and manipulated. The relationship between trapped particle positions and the relative phases of the four transducers is measured and shown to agree with analytically derived expressions. The force available is measured by determining the response to a sudden change in field and found to be 30 pN, for a 30 V pp input, which is in agreement with the predictions of models of the system. A scalable fabrication approach to producing devices is demonstrated.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3