Swarming, swirling and stasis in sequestered bristle-bots

Author:

Giomi L.1,Hawley-Weld N.1,Mahadevan L.1

Affiliation:

1. School of Engineering and Applied Sciences and Department of Physics, Harvard University, Pierce Hall, 29 Oxford Street, Cambridge, MA 02138, USA

Abstract

The collective ability of organisms to move coherently in space and time is ubiquitous in any group of autonomous agents that can move and sense each other and the environment. Here, we investigate the origin of collective motion and its loss using macroscopic self-propelled bristle-bots, simple automata made from a toothbrush and powered by an onboard cell phone vibrator-motor, that can sense each other through shape-dependent local interactions, and can also sense the environment non-locally via the effects of confinement and substrate topography. We show that when bristle-bots are confined to a limited arena with a soft boundary, increasing the density drives a transition from a disordered and uncoordinated motion to organized collective motion either as a swirling cluster or a collective dynamical stasis. This transition is regulated by a single parameter, the relative magnitude of spinning and walking in a single automaton. We explain this using quantitative experiments and simulations that emphasize the role of the agent shape, environment and confinement via boundaries. Our study shows how the behavioural repertoire of these physically interacting automatons controlled by one parameter translates into the mechanical intelligence of swarms.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3