Stability transitions of an axially moving string subjected to a distributed follower force

Author:

Lad PranavORCID,Kartik V.

Abstract

The transverse vibrations of an axially moving string that is subjected to a distributed follower force are examined here. This model provides an insight into the complex dynamics of seemingly simpler systems such as silicon wafer cutting using wire saws, and aerial or marine towing, where a relatively long flexible structure is dragged through fluid. The equation of motion is derived and it includes the axial variation in the tension that arises due to acceleration and the follower force. As the exact analytical solution of this equation is difficult to determine, the approximate closed-form modal solution of a non-travelling counterpart of the system is obtained using the asymptotic technique, which is then used as a basis to obtain the numerical solution for the axially moving string. The effect of the follower force and viscous dissipation on the eigenstructure of the system is investigated. Mathematical operations such as the Hermite form and the Routh–Hurwitz criterion are applied to the characteristic polynomial to investigate the dynamic behaviour of these modes. The semi-analytical approach presented explains the ‘mathematical’ instability (in the absence of damping) that arises when both axial transport and follower force are simultaneously present. An unusual transition of the dynamic behaviour from the stable to the overdamped and then directly to the unstable regime is observed.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3