Affiliation:
1. Mathematical Sciences Institute, The Australian National University, Canberra, A.C.T. 0200, Australia
Abstract
We consider the anisotropic Ising model on the triangular lattice with finite boundaries, and use Kaufman’s spinor method to calculate low-temperature series expansions for the partition function to high order. From these, we can obtain 108-term series expansions for the bulk, surface and corner free energies. We extrapolate these to all terms and thereby conjecture the exact results for each. Our results agree with the exactly known bulk-free energy and with Cardy and Peschel’s conformal invariance predictions for the dominant behaviour at criticality. For the isotropic case, they also agree with Vernier and Jacobsen’s conjecture for the 60
°
corners.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献