Abstract
A common format is developed for a mass and an inerter-based resonant vibration absorber device, operating on the absolute motion and the relative motion at the location of the device, respectively. When using a resonant absorber a specific mode is targeted, but in the calibration of the device it may be important to include the effect of other non-resonant modes. The classic concept of a quasi-static correction term is here generalized to a quasi-dynamic correction with a background inertia term as well as a flexibility term. An explicit design procedure is developed, in which the background effects are included via a flexibility and an inertia coefficient, accounting for the effect of the non-resonant modes. The design procedure starts from a selected level of dynamic amplification and then determines the device parameters for an equivalent dynamic system, in which the background flexibility and inertia effects are introduced subsequently. The inclusion of background effect of the non-resonant modes leads to larger mass, stiffness and damping parameter of the device. Examples illustrate the relation between resonant absorbers based on a tuned mass or a tuned inerter element, and demonstrate the ability to attain balanced calibration of resonant absorbers also for higher modes.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Reference23 articles.
1. Frahm H. 1909 Device for damped vibrations of bodies . U.S. patent no. 989958 October 30.
2. The theory of the dynamic vibration absorber;Ormondroyd J;Trans. ASME,1928
3. A note on the damped vibration absorber;Brock JE;J. Appl. Mech.,1946
4. Frequency Analysis of the Tuned Mass Damper
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献