An asymptotic hyperbolic–elliptic model for flexural-seismic metasurfaces

Author:

Wootton P. T.1ORCID,Kaplunov J.1ORCID,Colquitt D. J.2ORCID

Affiliation:

1. School of Computing and Mathematics, Keele University, Keele ST5 5BG, UK

2. Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK

Abstract

We consider a periodic array of resonators, formed from Euler–Bernoulli beams, attached to the surface of an elastic half-space. Earlier studies of such systems have concentrated on compressional resonators. In this paper, we consider the effect of the flexural motion of the resonators, adapting a recently established asymptotic methodology that leads to an explicit scalar hyperbolic equation governing the propagation of Rayleigh-like waves. Compared with classical approaches, the asymptotic model yields a significantly simpler dispersion relation, with closed-form solutions, shown to be accurate for surface wave-speeds close to that of the Rayleigh wave. Special attention is devoted to the effect of various junction conditions joining the beams to the elastic half-space which arise from considering flexural motion and are not present for the case of purely compressional resonators. Such effects are shown to provide significant and interesting features and, in particular, the choice of junction conditions dramatically changes the distribution and sizes of stop bands. Given that flexural vibrations in thin beams are excited more readily than compressional modes and the ability to model elastic surface waves using the scalar wave equation (i.e. waves on a membrane), the paper provides new pathways towards novel experimental set-ups for elastic metasurfaces.

Funder

EPSRC

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current developments in elastic and acoustic metamaterials science;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07-29

2. Elastic metasurfaces for Scholte–Stoneley wave control;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07-29

3. Broadband surface wave manipulation by periodic barriers in unsaturated soil;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07-29

4. Hybrid Rayleigh wave along a nonlocal nonlinear metasurface with two-degree-of-freedom spring–mass resonators;European Journal of Mechanics - A/Solids;2024-03

5. Wind turbines as a metamaterial-like urban layer: an experimental investigation using a dense seismic array and complementary sensing technologies;Frontiers in Earth Science;2024-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3