The recurrent relations for the electronic band structure of the multilayer graphene

Author:

Davydov V. N.12ORCID

Affiliation:

1. M.V. Lomonosov Moscow State University, Leninsky pr. 71, app. 121, 117296 Moscow, Russia

2. Addis Ababa University, Science Faculty, Department of Physics, Arat Kilo, 1176, Addis Ababa, Ethiopia

Abstract

The structure of the electronic energy bands for stacked multilayer graphene is developed using the tight-binding approximation (TBA). The spectra of the Dirac electrons are investigated in vicinity of the Brillouin zone minima. The electron energy dependence on quasi-momentum is established for an arbitrary number of the graphene layers for multilayer graphene having even number of layers N  = 2 n , ( n  = 2, 3, 4, …) with the Bernal stacking ABAB … AB; or for odd number of layers N  = 2 n  + 1, ( n  = 1, 2, 3, …) with stacking ABAB … A. It is shown that four non-degenerate energy branches of the electronic energy spectrum are present for any number of layers. Degeneracy is considered of graphene-like energy branches with linear dispersion law. Dependences of such branches number and their degeneracy are found on number of layers. The recurrent relations are obtained for the electronic band structure of the stacked ABA…, ABC… and AAA… multilayer graphene. The flat electronic bands are obtained for ABC-stacked multilayer graphene near the K -point at the Fermi level. Such an approach may be useful in the study of multivarious aspects of graphene's physics and nanotechnologies. Also paper gives new hints for deeper studies of graphite intercalation compounds.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3