A precise algorithm to detect voids in polydisperse circle packings

Author:

Specht EckardORCID

Abstract

Computer simulations are the primary tool for studying polydisperse particle packings quanti- tatively. For the problem of packing N unequal circles in a larger container circle, nothing is known a priori about the optimal packing (i.e. the packing with the highest packing fraction). Simulations usually start from a random initial configuration with the aim to finish with a dense final packing. Unfortunately, smaller circles often get stuck in trapped positions and prevent the rest of the packing from growing larger. Hence, the knowledge of the structure of unoccupied areas or holes inside a packing is important to be able to move trapped circles into free circular places or voids . A novel algorithm is proposed for detecting such voids in two-dimensional arbitrary circle packings by a decomposition of the contact graph. Combined with a clever object jumping strategy and together with other heuristic methods like swaps and shifts, this approach increases the packing fraction ϕ significantly. Its effectiveness for jumping across the maximally random jammed barrier ( ϕ MRJ ≈0.8575 in the large- N limit) for small benchmark instances as well as for large problem sizes (up to N ≈10 3 ) is demonstrated.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3