Fourier, hyperbolic and relativistic heat transfer equations: a comparative analytical study

Author:

López Molina Juan A.1,Rivera María J.1,Berjano Enrique2ORCID

Affiliation:

1. Department of Applied Mathematics, Instituto de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain

2. Biomedical Synergy, Electronic Engineering Department, Universitat Politècnica de València, Valencia, Spain

Abstract

Parabolic heat equation based on Fourier's theory (FHE), and hyperbolic heat equation (HHE), has been used to mathematically model the temperature distributions of biological tissue during thermal ablation. However, both equations have certain theoretical limitations. The FHE assumes an infinite thermal energy propagation speed, whereas the HHE might possibly be in breach of the second law of thermodynamics. The relativistic heat equation (RHE) is a hyperbolic-like equation, whose theoretical model is based on the theory of relativity and which was designed to overcome these theoretical impediments. In this study, the three heat equations for modelling of thermal ablation of biological tissues (FHE, HHE and RHE) were solved analytically and the temperature distributions compared. We found that RHE temperature values were always lower than those of the FHE, while the HHE values were higher than the FHE, except for the early stages of heating and at points away from the electrode. Although both HHE and RHE are mathematically hyperbolic, peaks were only found in the HHE temperature profiles. The three solutions converged for infinite time or infinite distance from the electrode. The percentage differences between the FHE and the other equations were larger for higher values of thermal relaxation time in HHE.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3