Union bound for quantum information processing

Author:

Khabbazi Oskouei Samad1,Mancini Stefano23,Wilde Mark M.4ORCID

Affiliation:

1. Department of Mathematics, Islamic Azad University, Varamin-Pishva Branch, 33817-7489 Iran

2. School of Science and Technology, University of Camerino, Via M. delle Carceri 9, 62032 Camerino, Italy

3. INFN–Sezione Perugia, Via A. Pascoli, 06123 Perugia, Italy

4. Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA

Abstract

In this paper, we prove a quantum union bound that is relevant when performing a sequence of binary-outcome quantum measurements on a quantum state. The quantum union bound proved here involves a tunable parameter that can be optimized, and this tunable parameter plays a similar role to a parameter involved in the Hayashi–Nagaoka inequality (Hayashi & Nagaoka 2003 IEEE Trans. Inf. Theory 49 , 1753–1768. ( doi:10.1109/TIT.2003.813556 )), used often in quantum information theory when analysing the error probability of a square-root measurement. An advantage of the proof delivered here is that it is elementary, relying only on basic properties of projectors, Pythagoras' theorem, and the Cauchy–Schwarz inequality. As a non-trivial application of our quantum union bound, we prove that a sequential decoding strategy for classical communication over a quantum channel achieves a lower bound on the channel's second-order coding rate. This demonstrates the advantage of our quantum union bound in the non-asymptotic regime, in which a communication channel is called a finite number of times. We expect that the bound will find a range of applications in quantum communication theory, quantum algorithms and quantum complexity theory.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference55 articles.

1. Dover Books on Mathematics;Rozanov YA,1977

2. Aaronson S. 2018 How to upper-bound the probability of something bad. See https://www.scottaaronson.com/blog/?p=3712.

3. Quantum union bounds for sequential projective measurements

4. Hirche C. 2015 Polar codes in quantum information theory. Master's thesis Leibniz Universität Hannover. (http://arxiv.org/abs/1501.03737)

5. The classical-quantum channel with random state parameters known to the sender

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3