Critical assessment of hydrogen effects on the slip transmission across grain boundaries in α -Fe

Author:

Adlakha I.,Solanki K. N.

Abstract

Grain boundaries (GBs) play a fundamental role in the strengthening mechanism of crystalline structures by acting as an impediment to dislocation motion. However, the presence of an aggressive environment such as hydrogen increases the susceptibility to intergranular fracture. Further, there is a lack of systematic investigations exploring the role of hydrogen on the dislocation–grain-boundary (DGB) interactions. Thus, in this work, the effect of hydrogen on the interactions between a screw dislocation and 〈111〉 tilt GBs in α -Fe were examined. Our simulations reveal that the outcome of the DGB interaction strongly depends on the underlying GB dislocation network. Further, there exists a strong correlation between the GB energy and the energy barrier for slip transmission. In other words, GBs with lower interfacial energy demonstrate a higher barrier for slip transmission. The introduction of hydrogen along the GB causes the energy barrier for slip transmission to increase consistently for all of the GBs examined. The energy balance for a crack initiation in the presence of hydrogen was examined with the help of our observations and previous findings. It was found that the presence of hydrogen increases the strain energy stored within the GB which could lead to a transgranular-to-intergranular fracture mode transition.

Funder

Office of Naval Research

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference63 articles.

1. The Deformation and Ageing of Mild Steel: III Discussion of Results

2. The fracture of metals

3. Fatigue of Materials

4. A mechanistic theory of hydrogen embrittlement of steels;Oriani RA;Ber. Bunsenges. Phys. Chem.,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3