Behaviour of crystalline–amorphous interfaces in energetic aggregates subjected to coupled thermomechanical and laser loading

Author:

Brown Judith A.,Zikry M. A.

Abstract

The behaviour of energetic aggregates was investigated for quasi-static compression and high strain rate thermomechanical compression behaviour that is coupled to laser irradiation. A dislocation-density-based crystal plasticity formulation was used to represent energetic crystalline behaviour, a finite viscoelastic formulation was used for the polymer binder and a coupled electromagnetic (EM)–thermomechanical computational scheme was used to predict aggregate response. Aggregates with different crystal sizes were considered to account for physically representative energetic microstructures and to understand the effects of crystal–crystal and crystal–binder interactions. The presence of smaller embedded crystals in the binder ligaments inhibited viscous sliding, and resulted in global hardening of the aggregate, which led to large stress gradients, localized plasticity and dislocation-density accumulation. The embedded crystals also increased scattering of the EM wave within the binder ligaments and increased the localization of EM energy and laser heat generation. Geometrically, necessary dislocation densities and stress gradients were calculated to characterize how hardening at the binder interfaces can lead to strengthening or defect nucleation.

Funder

Office of Naval Research

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3