A priori estimation of memory effects in reduced-order models of nonlinear systems using the Mori–Zwanzig formalism

Author:

Gouasmi AyoubORCID,Parish Eric J.,Duraisamy Karthik

Abstract

Reduced models of nonlinear dynamical systems require closure, or the modelling of the unresolved modes. The Mori–Zwanzig procedure can be used to derive formally closed evolution equations for the resolved physics. In these equations, the unclosed terms are recast as a memory integral involving the time history of the resolved variables. While this procedure does not reduce the complexity of the original system, these equations can serve as a mathematically consistent basis to develop closures based on memory approximations. In this scenario, knowledge of the memory kernel is paramount in assessing the validity of a memory approximation. Unravelling the memory kernel requires solving the orthogonal dynamics, which is a high-dimensional partial differential equation that is intractable, in general. A method to estimate the memory kernel a priori , using full-order solution snapshots, is proposed. The key idea is to solve a pseudo orthogonal dynamics equation, which has a convenient Liouville form, instead. This ersatz arises from the assumption that the semi-group of the orthogonal dynamics is a composition operator for one observable. The method is exact for linear systems. Numerical results on the Burgers and Kuramoto–Sivashinsky equations demonstrate that the proposed technique can provide valuable information about the memory kernel.

Funder

Air Force Office of Scientific Research

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3