Multifractal formalisms for multivariate analysis

Author:

Jaffard Stéphane1ORCID,Seuret Stéphane1,Wendt Herwig2,Leonarduzzi Roberto34,Abry Patrice4

Affiliation:

1. LAMA, Univ Paris Est Creteil, Univ Gustave Eiffel, UPEM, CNRS, 94010 Créteil, France

2. Université de Toulouse, CNRS, IRIT, Toulouse, France

3. Ecole Normale Supérieure, PSL, 75005 Paris, France

4. Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France

Abstract

Multifractal analysis, that quantifies the fluctuations of regularities in time series or textures, has become a standard signal/image processing tool. It has been successfully used in a large variety of applicative contexts. Yet, successes are confined to the analysis of one signal or image at a time (univariate analysis). This is because multivariate (or joint) multifractal analysis remains so far rarely used in practice and has barely been studied theoretically. In view of the myriad of modern real-world applications that rely on the joint (multivariate) analysis of collections of signals or images, univariate analysis constitutes a major limitation. The goal of the present work is to theoretically ground multivariate multifractal analysis by studying the properties and limitations of the most natural extension of the univariate formalism to a multivariate formulation. It is notably shown that while performing well for a class of model processes, this natural extension is not valid in general. Based on the theoretical study of the mechanisms leading to failure, we propose alternative formulations and examine their mathematical properties.

Funder

Agence Nationale de la Recherche

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference33 articles.

1. Jaffard S. 2004 Wavelet techniques in multifractal analysis. In Fractal geometry and applications: a Jubilee of Benoît Mandelbrot (eds M Lapidus M van Frankenhuijsen). Proceedings of Symposia in Pure Mathematics vol. 72(2) pp. 91–152. Providence RI: American Mathematical Society.

2. Abry P Jaffard S Wendt H. 2015 Irregularities and scaling in signal and image processing: multifractal analysis. In Benoit Mandelbrot: a life in many dimensions (eds M Frame N Cohen) pp. 31–116. Singapore: World Scientific Publishing.

3. p-exponent and p-leaders, Part I: Negative pointwise regularity

4. p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis

5. Parisi G Frisch U. 1985 Fully developed turbulence and intermittency. In Turbulence and predictability in geophysical fluid dynamics and climate dynamics (eds M Ghil R Benzi G Parisi) pp. 84–88. Amsterdam The Netherlands: North-Holland.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3