A two-layer approach to modelling the transformation of dilute pyroclastic currents into dense pyroclastic flows

Author:

Doyle Emma E.12,Hogg Andrew J.3,Mader Heidy M.2

Affiliation:

1. Joint Centre for Disaster Research, Massey University, PO Box 756, Wellington 6140, New Zealand

2. Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK

3. School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK

Abstract

Most models of volcanic ash flows assume that the flow is either dilute or dense, with dynamics dominated by fluid turbulence or particle collisions, respectively. However, most naturally occurring flows feature both of these end members. To this end, a two-layer model for the formation of dense pyroclastic basal flows from dilute, collapsing volcanic eruption columns is presented. Depth-averaged, constant temperature, continuum conservation equations to describe the collapsing dilute current are derived. A dense basal flow is then considered to form at the base of this current owing to sedimentation of particles and is modelled as a granular avalanche of constant density. We present results which show that the two-layer model can predict much larger maximum runouts than would be expected from single-layer models, based on either dilute or dense conditions, as the dilute surge can outrun the dense granular flow, or vice versa, depending on conditions.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3