The motion of a vortex on a closed surface of constant negative curvature

Author:

Ragazzo C. GrottaORCID

Abstract

The purpose of this work is to present an algorithm to determine the motion of a single hydrodynamic vortex on a closed surface of constant curvature and of genus greater than one. The algorithm is based on a relation between the Laplace–Beltrami Green function and the heat kernel. The algorithm is used to compute the motion of a vortex on the Bolza surface. This is the first determination of the orbits of a vortex on a closed surface of genus greater than one. The numerical results show that all the 46 vortex equilibria can be explicitly computed using the symmetries of the Bolza surface. Some of these equilibria allow for the construction of the first two examples of infinite vortex crystals on the hyperbolic disc. The following theorem is proved: ‘a Weierstrass point of a hyperellitic surface of constant curvature is always a vortex equilibrium’.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3