An investigation into the feasibility of internal strain measurement in solids by correlation of ultrasonic images

Author:

Bowler A. I.1,Drinkwater B. W.1,Wilcox P. D.1

Affiliation:

1. Department of Mechanical Engineering, University of Bristol, University Walk, Queen’s Building, Bristol BS8 1TR, UK

Abstract

This paper investigates the feasibility of an ultrasonic method for measuring internal displacements and strains in engineering components at depths of tens of millimetres. The principle is to use an ultrasonic array to generate images of the speckle pattern produced by the material microstructure before and after the application of load. Under the assumption of constant ultrasonic velocity, a block-matching method is used to find the relative displacement of small portions of the images between the two loading states, and hence the strain. Experiments performed using a 5 MHz ultrasonic array show that good displacement measurement results are obtained from the speckle directly below the array at depths of up to 45 mm. The results demonstrate that the technique can be used to identify the onset of plasticity and non-uniformity in strain across the field of view. However, while the actual values of strain obtained are correct in some directions, they are systematically incorrect in other directions by a factor between five and six. It is shown that this is because the change in ultrasonic velocity owing to load (the acousto-elastic effect) has, in some cases, a more significant effect on ultrasonic propagation time than the change in distance owing to strain.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3