Affiliation:
1. Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK
2. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
Abstract
We solve the forward and inverse problems associated with the transformation of flat sheets with circularly symmetric director fields to surfaces of revolution with non-trivial topography, including Gaussian curvature, without a stretch elastic cost. We deal with systems slender enough to have a small bend energy cost. Shape change is induced by light or heat causing contraction along a non-uniform director field in the plane of an initially flat nematic sheet. The forward problem is, given a director distribution, what shape is induced? Along the way, we determine the Gaussian curvature and the evolution with induced mechanical deformation of the director field and of material curves in the surface (proto-radii) that will become radii in the final surface. The inverse problem is, given a target shape, what director field does one need to specify? Analytic examples of director fields are fully calculated that will, for specific deformations, yield catenoids and paraboloids of revolution. The general prescription is given in terms of an integral equation and yields a method that is generally applicable to surfaces of revolution.
Funder
Engineering and Physical Sciences Research Council
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献