Reactive learning strategies for iterated games

Author:

McAvoy Alex1ORCID,Nowak Martin A.1

Affiliation:

1. Program for Evolutionary Dynamics, Harvard University, 1 Brattle Square, Suite 6, Cambridge, MA 02138, USA

Abstract

In an iterated game between two players, there is much interest in characterizing the set of feasible pay-offs for both players when one player uses a fixed strategy and the other player is free to switch. Such characterizations have led to extortionists, equalizers, partners and rivals. Most of those studies use memory-one strategies, which specify the probabilities to take actions depending on the outcome of the previous round. Here, we consider ‘reactive learning strategies’, which gradually modify their propensity to take certain actions based on past actions of the opponent. Every linear reactive learning strategy, p *, corresponds to a memory one-strategy, p , and vice versa. We prove that for evaluating the region of feasible pay-offs against a memory-one strategy, C ( p ) , we need to check its performance against at most 11 other strategies. Thus, C ( p ) is the convex hull in R 2 of at most 11 points. Furthermore, if p is a memory-one strategy, with feasible pay-off region C ( p ) , and p * is the corresponding reactive learning strategy, with feasible pay-off region C ( p ) , then C ( p ) is a subset of C ( p ) . Reactive learning strategies are therefore powerful tools in restricting the outcomes of iterated games.

Funder

Army Research Laboratory

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution of reciprocity with limited payoff memory;Proceedings of the Royal Society B: Biological Sciences;2024-06

2. Inferring to cooperate: Evolutionary games with Bayesian inferential strategies;New Journal of Physics;2024-06-01

3. Exploring Biocomplexity in Cancer: A Comprehensive Review;Open Journal of Biophysics;2024

4. A geometric process of evolutionary game dynamics;Journal of The Royal Society Interface;2023-11

5. Adaptive dynamics of memory-one strategies in the repeated donation game;PLOS Computational Biology;2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3