Affiliation:
1. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
Abstract
Origami (paper folding) is an effective tool for transforming two-dimensional materials into three-dimensional structures, and has been widely applied to robots, deployable structures, metamaterials, etc. Rigid origami is an important branch of origami where the facets are rigid, focusing on the kinematics of a panel-hinge model. Here, we develop a theoretical framework for rigid origami, and show how this framework can be used to connect rigid origami and its cognate areas, such as the rigidity theory, graph theory, linkage folding and computer science. First, we give definitions regarding fundamental aspects of rigid origami, then focus on how to describe the configuration space of a creased paper. The shape and 0-connectedness of the configuration space are analysed using algebraic, geometric and numeric methods. In the algebraic part, we study the tangent space and generic rigid-foldability based on the polynomial nature of constraints for a panel-hinge system. In the geometric part, we analyse corresponding spherical linkage folding and discuss the special case when there is no cycle in the interior of a crease pattern. In the numeric part, we review methods to trace folding motion and avoid self-intersection. Our results will be instructive for the mathematical and engineering design of origami structures.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Reference40 articles.
1. From flat sheets to curved geometries: Origami and kirigami approaches
2. Origami theory and its applications: a literature review;Debnath S;World Acad. Sci. Eng. Technol.,2013
3. Geometric Folding Algorithms
4. Freeform variations of origami;Tachi T;J. Geom. Graph.,2010
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献