Stochastic Boltzmann equation for magnetic relaxation in high-spin molecules

Author:

Packwood Daniel M.1ORCID,Katzgraber Helmut G.2345,Teizer Winfried123

Affiliation:

1. Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

2. Department of Physics and Astronomy, Texas A & M University, College Station, TX 77843-4242, USA

3. Materials Science and Engineering Program, Texas A & M University, College Station, TX 77843, USA

4. Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

5. Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB, UK

Abstract

We introduce the stochastic Boltzmann equation (SBE) as an approach for exploring the spin dynamics of magnetic molecules coupled to a stochastic environment. The SBE is a time-evolution equation for the probability density of the spin density matrix of the system. This probability density is relevant to experiments which take measurements on single molecules, in which probabilities of observing particular spin states (rather than ensemble averages) are of interest. By analogy with standard treatments of the regular Boltzmann equation, we propose a relaxation-time approximation for the SBE and show that solutions to the SBE under the relaxation-time approximation can be obtained by performing simple trajectory simulations for the case of a boson gas environment. Cases where the relaxation-time approximation are satisfied can therefore be investigated by careful choice of the parameters for the boson gas environment, even if the actual environment is quite different from a boson gas. The application of the SBE approach is demonstrated through an illustrative example.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3