Influences of sodium and glycosaminoglycans on skin oedema and the potential for ulceration: a finite-element approach

Author:

Pan Wu1,Roccabianca Sara1,Basson Marc D.2,Bush Tamara Reid1ORCID

Affiliation:

1. Department of Mechanical Engineering, Michigan State University, 428 South Shaw Lane, Room 2555, East Lansing, MI 48824, USA

2. Department of Surgery at the University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA

Abstract

Venous ulcers are chronic transcutaneous wounds common in the lower legs. They are resistant to healing and have a 78% chance of recurrence within 2 years. It is commonly accepted that venous ulcers are caused by the insufficiency of the calf muscle pump, leading to blood pooling in the lower legs, resulting in inflammation, skin oedema, tissue necrosis and eventually skin ulceration. However, the detailed physiological events by which inflammation contributes to wound formation are poorly understood. We therefore sought to develop a model that simulated the inflammation, using it to determine the internal stresses and pressure on the skin that contribute to venous ulcer formation. A three-layer finite-element skin model (epidermis, dermis and hypodermis) was developed to explore the roles in wound formation of two inflammation identifiers: glycosaminoglycans (GAG) and sodium. A series of parametric studies showed that increased GAG and sodium content led to oedema and increased tissue stresses of 1.5 MPa, which was within the reported range of skin tissue ultimate tensile stress (0.1–40 MPa). These results suggested that both the oedema and increased fluid pressure could reach a threshold for tissue damage and eventual ulcer formation. The models presented here provide insights to the pathological events associated with venous insufficiency, including inflammation, oedema and skin ulceration.

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3