Ultrastructural evidence of a mechanosensory function of scale organs (sensilla) in sea snakes (Hydrophiinae)

Author:

Crowe-Riddell Jenna M.1ORCID,Williams Ruth2,Chapuis Lucille3ORCID,Sanders Kate L.1ORCID

Affiliation:

1. School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia

2. Adelaide Microscopy, the Centre for Advanced Microscopy and Microanalysis, Adelaide, South Australia 5005, Australia

3. College of Life and Environmental Science, University of Exeter, Exeter EX4 4QD, UK

Abstract

The evolution of epidermal scales was a major innovation in lepidosaurs, providing a barrier to dehydration and physical stress, while functioning as a sensitive interface for detecting mechanical stimuli in the environment. In snakes, mechanoreception involves tiny scale organs (sensilla) that are concentrated on the surface of the head. The fully marine sea snakes (Hydrophiinae) are closely related to terrestrial hydrophiine snakes but have substantially more protruding (dome-shaped) scale organs that often cover a larger portion of the scale surface. Various divergent selection pressures in the marine environment could account for this morphological variation relating to detection of mechanical stimuli from direct contact with stimuli and/or indirect contact via water motion (i.e. ‘hydrodynamic reception’), or co-option for alternate sensory or non-sensory functions. We addressed these hypotheses using immunohistochemistry, and light and electron microscopy, to describe the cells and nerve connections underlying scale organs in two sea snakes, Aipysurus laevis and Hydrophis stokesii . Our results show ultrastructural features in the cephalic scale organs of both marine species that closely resemble the mechanosensitive Meissner-like corpuscles that underlie terrestrial snake scale organs. We conclude that the scale organs of marine hydrophiines have retained a mechanosensory function, but future studies are needed to examine whether they are sensitive to hydrodynamic stimuli.

Funder

Australian Governmnet Research Training Program Scholarship

The Hermon Slade Foundation

ARC Future Fellowship

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3