Improved systems of pesticide application

Author:

Abstract

More efficient transfer of pesticides to their intended biological targets is essential to reduce costs, to minimize the selection of resistant pests and to avoid environmental pollution. Most pesticide formulations are diluted in water and applied as sprays with a wide range of droplet sizes. The hazard of down-wind ‘drift’ of the smallest droplets is increased by evaporation, while most wastage is due to the largest droplets, which are poorly retained on most targets. Spray retention is improved by using narrower droplet-size spectra appropriate for particular targets. This permits reduction of spray volumes, use of less volatile formulations and more rapid and timely application in relation to pest infestations. Increased deposition on undersurfaces of leaves is achieved by controlling trajectories of electrostatically charged droplets. New low-energy systems to deliver ultra-low volumes of charged sprays will improve integration of chemical with biological controls and will eliminate hazards associated with preparation of sprays.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3