Some life-history consequences of modular construction in plants

Author:

Abstract

The nature and life-history consequences of modular construction in plants are discussed with particular reference to growth, reproduction and survival. Plants grow by the iteration of modular units and as a consequence growth can be described in terms of the population dynamics of these structural units. Changes in size, whether positive or negative, depend on the birth and death rates of modules; however, if the births continue to exceed the deaths, plants then have the capability of attaining enormous sizes, especially if they are clonal. The population nature of plant growth also means that plants of the same age may show large variation in individual size if individuals differ in their relative growth rates. Correlations between age and size are often, therefore, very weak. Constraints on the allocation of resources accumulated during growth have important implications for the reproductive schedules of plants, but the analysis of constraint functions has so far revealed little about the actual detail of these schedules. All the meristems of semelparous plants are involved in or die at reproduction and as a consequence death of the genet follows reproduction. For iteroparous plants, however, there are fundamental differences between the reproductive schedules of plants with a single shoot module and those with many shoot modules. The former demonstrate a relatively constant rate of reproduction from year to year following maturity whereas the latter show a continual increase in fecundity with size and age. The reproductive schedules of clonal plants are further discussed in relation to the allocation of meristems to either growth or reproduction. The pattern of mortality is examined at both the level of the module and the genet. Particular attention is focused on the survival and senescence of leaves and shoots; there is no equivalent regular shedding of organs in unitary organisms. Whereas genet senescence and death are coincident with shoot module death in semelparous plants, there is no evident relation between them in iteroparous plants. The life span of the genet reflects the birth and death rates of its modules and both aclonal and clonal plants that are iteroparous may achieve considerable longevity. The longevity of aclonal plants often seems to be restricted by the accumulation of dead material and the problems of being large. Clonal plants are, in contrast, potentially immortal. It is questionable whether the genets of iteroparous plants show senescence as defined for unitary organisms since there is no separation of germ plasm from soma and since apical meristems do not appear to senesce. Insofar as they retain the capacity for rejuvenescence from apical meristems, genets of modular organisms do not senesce; it is only the constituent organs that show senescence, death and decay.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference56 articles.

1. Abrahamson W. G. 1980 Demography and vegetative reproduction. In Demography and evolution inplant populations (ed. O. T. Solbrig) pp. 89-106. Oxford: Blackwell Scientific Publications.

2. THE BIOLOGY OF AMBROSIA TRIFIDA L.. III. GROWTH AND BIOMASS ALLOCATION

3. A Model for Growth and Self-thinning in Even-aged Monocultures of Plants

4. Population Dynamics of the Grass Anthoxanthum Odoratum on a Zinc Mine

5. A Quantitative Theory of Reproductive Effort in Rhizomatous Perennial Plants

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3