Fresh approaches to antibiotic production

Author:

Abstract

New antibiotics are needed, ( a ) to control diseases that are refractory to existing ones either because of intrinsic or acquired drug resistance of the pathogen or because inhibition of the disease is difficult, at present, without damaging the host (fungal and viral diseases, and tumours), ( b ) for the control of plant pathogens and of invertebrates such as helminths, insects, etc., and ( c ) for growth promotion in intensive farming. Numerous new antibiotics are still being obtained from wild microbes, especially actinomycetes. Chemical modification of existing compounds has also had notable success. Here we explore the uses, actual and potential, of genetics to generate new antibiotics and to satisfy the ever-present need to increase yield. Yield improvement has depended in the past on mutation and selection, combined with optimization of fermentation conditions. Progress would be greatly accelerated by screening random recombinants between divergent high-yielding strains. Strain improvement may also be possible by the introduction of extra copies of genes of which the products are rate-limiting, or of genes conferring beneficial growth characteristics. Although new antibiotics can be generated by mutation, either through disturbing known biosyntheses or by activating ‘silent’ genes, we see more promise in interspecific recombination between strains producing different secondary metabolites, generating producers of ‘hybrid’ antibiotics. As with proposals for yield improvement, there are two major strategies for obtaining interesting recombinants of this kind: random recombination between appropriate strains, or the deliberate movement of particular biosynthetic abilities between strains. The development of protoplast technology in actinomycetes, fungi and bacilli has been instrumental in bringing these idealized strategies to the horizon. Protoplasts of the same or different species can be induced to fuse by polyethylene glycol. At least in intraspecific fusion of streptomycetes, random and high frequency recombination follows. Protoplasts can also be used as recipients for isolated DNA, again in the presence of polyethylene glycol, so that the deliberate introduction of particular genes into production strains can be realistically envisaged. Various kinds of DNA cloning vectors are being developed to this end. Gene cloning techniques also offer rich possibilities for the analysis of the genetic control of antibiotic biosynthesis, knowledge of which is, at present, minimal. The information that should soon accrue can be expected to have profound effects on the application of genetics to industrial microbiology.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3