Ionic transport mechanisms underlying fluid secretion by the pancreas

Author:

Abstract

The pancreas is a ‘leaky’ epithelium and secretes a juice in which sodium and potassium have concentrations similar to those of plasma. The characteristic features of the secretion are its isosmolality and its high bicarbonate concentration. It is the latter that has attracted considerable attention. Secretion in the isolated cat pancreas is directly proportional to the bicarbonate concentration in the nutrient fluid. The ability of the gland to secrete weak acids has led to the view that because of the very different chemical nature of the anions, it is most likely that it is a component common to all buffers, the proton, that is subject to active transport. This is supported by the decrease in pH and the increase in p co 2 of the venous effluent when secretion occurs and the sensitivity of secretion to the pH of the nutritional extracellular fluid. It is proposed that the cellular mechanisms are as follows: CO 2 diffuses into the cell and is hydrated to carbonic acid under the influence of carbonic anhydrase. The bicarbonate ion so formed diffuses into the ductular lumen and the proton is transported backwards through the epithelium with a proton pump (Mg 2+ -ATPase) provisionally located in the luminal membrane and a hydrogen-sodium exchange carrier located in the basolateral membrane. Energy for the latter process is derived from the sodium gradient between extracellular fluid and cell. This gradient is maintained by a (Na + +K + )-ATPase also located in the basolateral membrane. Chloride appears to be transported partly through a chloride-bicarbonate exchange mechanism, but largely passively together with a large sodium and potassium com ponent through the paracellular pathway. Osmotic equilibrium is likely to occur in the small ductules.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3