Forests and regional-scale processes

Author:

Abstract

In this paper the surface energy balance of forests is considered on a regional scale. The interaction between the surface fluxes of sensible and latent heat on the one hand and the temperature (and humidity) of the planetary boundary layer (PBL) on the other is accounted for, as are entrainment processes at the top of the PBL. For this purpose, the one-dimensional PBL model of Troen & Mahrt is coupled to the simple ‘single-leaf’ vegetation model of Penman-Monteith. The surface conductance is described in accordance with Stewart, whereas the aerodynamic conductance is corrected for stability. The integrated model applies in stable, unstable and neutral conditions. Two forest types (‘Thetford’ and ‘Les Landes’) are modelled, and compared with grass and bare soil. In summertime, calculated temperature, saturation deficit and depth of the PBL are greater over forest than over grass. The entrainment of warm, dry air at the top of the PBL appears to be important. It supplies the energy to maintain the evaporation of wet forest higher than net radiation. Well-known features, such as low transpiration and high evaporation rates (compared with grass) when the canopy is dry and wet respectively, are described correctly.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference23 articles.

1. Catchment-scale evaporation and the atmospheric boundary layer

2. A model for the Priestley-Taylor parameter a. J. Climate appl;De Bruin H. A. R.;Met.,1983

3. Zero-plane displacement and roughness length for tall vegetation, derived from a simple mass conservation hypothesis

4. Predicting forest transpiration from climatological data

5. Driedonks A. G. M. 1981 Dynamics of the well-mixed atmospheric boundary layer. Scientific report W.R. 81-2. (189 pages.) De Bilt: Royal Netherlands Meteorological Institute.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3