Sulphate and phosphate transport in the renal proximal tubule

Author:

Abstract

Experiments performed on microperfused proximal tubules and brush-border membrane vesicles revealed that inorganic phosphate is actively reabsorbed in the proximal tubule involving a 2 Na + -HPO 2- 4 or H 2 PO 4 - co-transport step in the brush-border membrane and a sodium-independent exit step in the basolateral cell membrane. Na + - phosphate co-transport is competitively inhibited by arsenate. The transtubular transport regulation is mirrored by the brush-border transport step: it is inhibited by parathyroid hormone intracellularly mediated by cyclic AMP. Transepithelial inorganic phosphate (P i ) transport and Na + -dependent P i transport across the brush-border membrane correlates inversely with the P i content of the diet. Intraluminal acidification as well as intracellular alkalinization led to a reduction of transepithelial P i transport. Data from brush-border membrane vesicles indicate that high luminal H + concentrations reduce the affinity for Na + of the Na + -phosphate co-transport system, and that this mechanism might be responsible for the pH dependence of phosphate reabsorption. Contraluminal influx of P i from the interstitium into the cell could be partly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). It is not, however, changed when dicarboxylic acids are present or when the pH of the perfusate is reduced to pH 6. Sulphate is actively reabsorbed, involving electroneutral 2 Na + -SO 2 - 4 co-transport through the brush-border membrane. This transport step is inhibited by thiosulphate and molybdate, but not by phosphate or tungstate. The transtubular active sulphate reabsorption is not pH dependent, but is diminished by the absence of bicarbonate. The transport of sulphate through the contraluminal cell side is inhibited by DIDS and diminished when the capillary perfusate contains no bicarbonate or chloride. The latter data indicate the presence of an anion exchange system in the contraluminal cell membrane like that in the erythrocyte membrane.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference14 articles.

1. A urbach G. D. & H eath D. A. 1974 T he parathyroid horm one an d calcitonin regulation of renal function. Kidney int. 6 331-345.

2. Renal phosphate transport: Inhomogeneity of local proximal transport rates and sodium dependence

3. pH dependence of phosphate reabsorption in the proximal tubule of rat kidney

4. Biber J . M urer H . & M alm strom K. 1982 T he role of m em brane phosphorylation in P T H d ependent in - hibition of sodium dependent phosphate transport. (In preparation.)

5. Sulfate transport in rab b it proxim al convoluted tubules: presence of anion exchange;Brazy P. C.;Am. J. Physiol.,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3