Mechanism of complement cytolysis and the concept of channel-forming proteins

Author:

Abstract

Complement damages membranes via the terminal reaction sequence that leads to the formation of membrane-bound, macromolecular C5b-9(m) protein complexes. These complexes represent C5b-8 monomers to which varying numbers of C9 molecules can be bound. Complexes carrying high numbers of C9 ( ca . 6/8-12/16?) exhibit the morphology of hollow protein channels. Because they are embedded within the lipid bilayer, aqueous transmembrane pores are generated that represent the primary lesions caused by complement in the target cell membrane. Many other proteins damage membranes by forming channels in a manner analogous to the C5b-9(m) complex. Two prototypes of bacterial exotoxins, Staphylococcus aureus α-toxin and streptolysin-O, are discussed in this context, and attention is drawn to the numerous analogies existing among these protein systems. Common to all is the process of self-association of the native proteins to form supramolecular complexes. This event is in turn accompanied by a unique transition of the molecules from a hydrophilic to an amphiphilic state.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference62 articles.

1. Streptococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin)

2. Physical states of staphylococcal a-toxin;Arbuthnott J. P.;Bacteriol.,1967

3. Complement Iysis: evidence for an amphiphilic nature of the terminal membrane C5b-9 complex of human complement;Bhakdi S.;Immunol.,1978

4. Immunochemical analyses ofmembrane-bound complement: detection of the terminal complement complex and its similarity to *intrinsic ' erythrocyte membrane proteins. Biochim. biophys;Bhakdi S.;Acta,1975

5. Isolation of the terminal complement complex from target sheep erythrocyte membranes. Biochim. biophys;Bhakdi S.;Acta,1976

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3