The expression of heat-shock genes in higher plants

Author:

Abstract

High-temperature stress or heat shock induces the vigorous synthesis of heat-shock proteins in many organisms including the higher plants. This response has been implicated in the acquisition of thermotolerance. The biological importance of a group of low-molecular-mass proteins in the response of plants is indicated by the conservation of the corresponding genes. The steady-state levels of mRNAs for these proteins shift from undetectable levels at normal temperature to about 20 000 molecules per gene in the cell after heat shock. The analysis of ‘run-off’ transcripts from isolated soybean nuclei suggests a transcriptional control of gene expression. The DNA sequence analysis of soybean heat-shock genes revealed a conservation of promoter sequences and 5'-upstream elements. A comparison of the deduced amino acid sequences of polypeptides showed a conservation of structural features in heat-shock proteins between plants and animals. The implication of a common regulatory concept in the heat-shock response makes genes belonging to this family (15-18 kDa proteins) in soybean favourable candidates for investigating thermoregulation of transcription. We have exploited the natural gene transfer system ofAgrobacterium tumefaciensto introduce a soybean heat-shock gene into the genomes of sunflower and tobacco. The gene is thermoinducibly transcribed and transcripts are faithfully initiated in transgenic plants. Experiments are in progress to define the regulatory sequences 5'-upstream from the gene. The expression of heat-shock genes in a heterologous genetic background also provides the basis for studying the function of the proteins and their possible role in thermoprotection.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference82 articles.

1. 40-42 Key et al. (1981)

2. 37 5-40 Key et al. (1983 a)

3. Cooper & Ho (1983)

4. 42-47 Key et al. (1983 a)

5. 41-46 Key et al. (1983 a)

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3